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We apply KF Particle, a Kalman Filter package for secondary vertex finding and fitting, to strange and open
charm hadron reconstruction in heavy-ion collisions in the STAR experiment. Compared to the conventional
helix swimming method used in STAR, the KF Particle method improves the reconstructed Λ, Ω and D0 sig-
nificance considerably. At the same time, we demonstrate that Monte Carlo simulation with the STAR detector
responses can well reproduce the topological variable distributions reconstructed in real data using the KF Parti-
cle method, therefore retaining good control on the reconstruction efficiency uncertainties for strange and open
charm hadrons measurements in heavy-ion collisions.
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I. INTRODUCTION1

In high-energy particle and nuclear physics experiments,2

strange and heavy flavor hadrons have unique roles in study-3

ing the electroweak and strong interactions in the Standard4

Model [1–3]. These particles are mostly short-lived parti-5

cles, and their ground state particles, such as K0
S , Λ, D0,6

and Λ+
c , have a proper lifetime (cτ ) varying from tens of mi-7

crometers to several centimeters [4]. Experimentally recon-8

structing their decay positions and separating them from col-9

lision vertices would be necessary to achieve precision mea-10

surements [5, 6]. This becomes extremely critical in high11

energy heavy-ion experiments at RHIC and the LHC where12

thousands of particles are produced from the collision ver-13

tex. Secondary vertex reconstruction can significantly reduce14

the combinatorial background in these collisions while at the15

same time it also involves a finite reconstruction efficiency,16

especially for low momentum particles [5, 6]. Therefore one17

would need to consider a balance between the combinatorial18

background and the reconstruction efficiency for the particle19

of interest to achieve the best experimental measurement pre-20

cision.21

The STAR detector at RHIC is a general purpose detec-22

tor dedicated for heavy-ion experiments [7]. The main track-23

ing subsystem, the Time Projection Chamber (TPC) [8], pro-24

vides a pointing resolution of ∼mm to the collision vertex25

for charged tracks which allows the topological separation of26

strange hadron weak decay positions from the primary col-27

lision point. A high resolution silicon detector, the Heavy28

Flavor Tracker (HFT), operated in 2014-2016, improves the29

charged track pointing resolution to be better than ∼ 50 µm30

for 750 MeV/c charged kaon tracks [9]. This enables the31

topological reconstruction of various open charm hadron de-32

cays in heavy-ion collisions [5, 10].33

Traditionally, the secondary vertex reconstruction in STAR34

has been conducted by searching for the closest distance of35

approach (DCA) points of two charged track helices, called36

the helix swimming method (HS). Then the decay position is37

taken to be the middle of the two DCA points. This method38

has shown good performance in reconstructing strange and39

open charm hadrons in heavy-ion collisions [5, 6]. Fig-40

ure 1 shows a sketch of key topological variables used in this41

method: DCA of daughters particles to the primary vertex,42

DCA between two daughter particles, decay length from the43

decay vertex position to the primary vertex, θ - the angle be-44

tween the interested particle momentum vector and the decay45

length vector, and/or the DCA between the interested particle46

helix and the primary vertex. The calculations are conducted47

based on the mathematical helix model for daughter tracks.48

No experimental estimated uncertainties are included in this49

reconstruction method.50

Recently, within STAR, an experimentally estimated error51

matrix on track helix fitted parameters has been made avail-52

able in offline analysis software infrastructure. At the same53

time, the KF Particle package, a Kalman Filter method for54

secondary vertex finding and fitting utilizing the estimated55

track helix error matrices, has been deployed for STAR of-56

fline analysis. The goal is to improve the secondary parti-57

cle reconstruction with constraints provided by the additional58

knowledge on the error matrices of various topological vari-59

ables.60

This paper reports the result of applying the KF Particle61

method to the reconstruction of strange (Λ,Ω−) and open62

charm (D0) hadrons in heavy-ion collisions at the STAR63
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Fig. 1. Sketch of key topological variables used by the helix swim-
ming method.

experiment. A Toolkit for Multi-Variate Analysis (TMVA)64

package deployed in ROOT [11] has been used to optimize65

topological selection cuts for the best signal significance in66

both helix swimming and KF Particle methods. The paper is67

organized as follows: Sec. II describes how the KF Particle68

method handles secondary particle reconstruction and fitting.69

The application of the KF Particle method to the STAR data70

are discussed in Sec. III. We compare the optimized signal71

performance from the helix swimming method and the KF72

Particle method. We also compare various topological vari-73

able distributions from the KF Particle method obtained in74

real data and Monte Carlo simulations. Finally, we summa-75

rize our findings in Sec. IV.76

II. KF PARTICLE METHOD77

The Kalman Filter (KF) [12] is a recursive method for the78

analysis of linear discrete dynamic systems described by a79

vector of parameters, which is called the state vector r, ac-80

cording to a series of measurements observed over time. It81

produces estimates of unknown vector parameters with high82

accuracy and is widely used in tracking and data prediction83

tasks.84

In particle experiments, the Kalman filter can be used to85

solve different tasks, such as track finding, particle recon-86

struction, and event vertex reconstruction [13]. In particular,87

the KF Particle package, which utilizes the Kalman filter for88

the reconstruction of short-lived particles and vertex finding,89

has been developed and is now applied to data analysis in90

STAR.91

In the KF Particle framework, each particle is de-92

scribed by a state vector with eight parameters [14]: r =93

(x, y, z, px, py, pz, E, s), where (x, y, z) is the position of the94

particle, (px, py, pz) is the momentum, E is the energy of the95

particle, and s = l/p, with l being the length of the trajectory96

in the laboratory coordinate system and p the particle total97

momentum. This natural particle parametrization makes the98

algorithm independent on the geometry of the detector sys-99

tem. The reconstructed state vector and its covariance ma-100

trix (C) contain all necessary information about the particle,101

which allows one to handily calculate physical quantities such102

as its momentum, energy, and lifetime with their accuracy,103

and also the χ2 values during the reconstruction, i.e. estimate104

the quality of reconstruction.105

To simplify the calculation, the momentum and energy of106

the mother particle are calculated from the sum of all daugh-107

ter particles and only the vertex position is fitted. After trans-108

porting a daughter particle to the current estimation of the de-109

cay vector (rk,Ck), the state vector of this daughter particle110

can be taken as a measurement (mk,V k) of the mother par-111

ticle’s state vector. Using the residual ζk between rk and mk112

and the Kalman gain matrix Kk calculated from the Ck and113

V k, the estimation of mother particle’s vector can be updated114

(rk+1,Ck+1) according to the formula 1.115

ζk = rk −mk, rk+1 = rk + Kkζk, Ck+1 = Ck −KkC
′

k

(1)

The χ2-criterion of this estimation can be obtained at the116

same time. By conducting this process on all daughter tracks,117

a basic filtering algorithm is formed. A full description of118

the algorithm and the mathematical justification can be found119

in Ref. [14, 15]. Here we briefly outline the scheme of the120

short-lived particle reconstruction, also shown in Fig. 2:121

r0 , C0 r1
i , C1

i rk
i , Ck

i rn , Cnrn
i , Cn

i

N iterations

Production vertex

k-th daughter

Decay vertex

Fig. 2. Basic diagram of short-lived particle reconstruction with the
KF Particle package.

1. Sort the final state particles into primary and secondary122

according to its χ2 to collision vertex.123

2. Choose an initial secondary decay point, often to be the124

DCA point to the collision vertex from the first daugh-125

ter track. Set the mother particle initial parameters (r0,126

C0), C0 is often set as an infinite diagonal matrix.127

3. Extrapolate the k-th daughter particle to the point of128

the closest approach with the current estimation of the129

decay point and update its parameters130

4. Correction of the decay vertex according to k-th daugh-131

ter particle and adding the 4-momentum of the daughter132

particle to the 4-momentum of the mother particle.133
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5. Loop over all n daughter particles and calculate an opti-134

mum estimation of the decay vector and its covariance135

matrix (rin, Ci
n) and the χ2 probabilities.136

6. If the production vertex of the mother particle (usually137

the primary vertex) is known, transport the mother par-138

ticle to it, then filter with the production vertex’s posi-139

tion and calculate the χ2 probabilities of the origination140

from the production vertex.141

7. Set rin and Ci
n as the mother particle’s initial parame-142

ters and repeat steps 3-6 N times.143

8. Finalize the precision of the mother particle parameters144

(rn, Cn).145

Compared to the traditional helix swimming method, the146

KF Particle method enjoys several important advantages:147

• Usage of the daughter particle track parameters covari-148

ance matrices adds information about the detector per-149

formance and the track reconstruction quality that im-150

proves the mother particle reconstruction accuracy and151

efficiency.152

• Statistical criteria are calculated and used for back-153

ground rejection.154

• The natural and simple interface allows to the recon-155

struction of complicated decay chains [15].156

• Usage of parallel programming provides high comput-157

ing speed for the above rather complicated calculations.158

III. APPLICATION TO DATA159

We apply the KF Particle method to the reconstruction of160

strange (Λ, Ω−) and open charm (D0) hadrons, using data161

collected by the STAR experiment. Recent experimental162

datasets of Au+Au collisions at
√
sNN = 27 GeV (for Λ, Ω−)163

and 200 GeV (for D0), which contain the error matrices in-164

formation of tracks parameters were used in this analysis.165

A. Λ reconstruction166

Λ particles are reconstructed via the decay channel Λ →167

p + π−, which has a branching ratio of 69.2% [4]. Λ parti-168

cles decay with a proper decay length of cτ ' 79 mm after169

they are produced in Au+Au collisions. Protons and pions170

are identified by ionization energy loss in the TPC gas. Prac-171

tically, charged tracks with |nσX| < 3 for any interested par-172

ticle X are selected, where nσX is defined by the following:173

nσX =
1

σX
log
〈dE/dx〉measured

〈dE/dx〉Bischel
X

, (2)

where 〈dE/dx〉measured is the average energy loss per unit174

length, measured by the time projection chamber (TPC) of the175

STAR detector; 〈dE/dx〉Bischel
X is the expected energy loss176

〈dE/dx〉 for a certain particle species X (in this case, proton177

or pion), and σparticle is the 〈dE/dx〉 resolution measured by178

the TPC (typically ' 8% [8]). For each proton or pion track,179

we require a minimum of 15 hits in the TPC to ensure good180

track quality.181

Using data collected by the STAR experiment from Au+Au182

collisions at
√
sNN = 27 GeV, Λ particles are reconstructed183

using the KF Particle method, and various kinematic and184

topological variables such as mass, pT , decay length, etc. are185

calculated. As shown in Fig. 3, clear Λ mass peaks are seen186

in the invariant mass mpπ− distributions in the pT range of187

0.4 to 6 GeV/c.188
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Fig. 3. pπ invariant mass distributions with pT = 0.4−0.6 GeV/c in
Au+Au collisions at

√
sNN = 27 GeV with centrality 0− 5%(left),

and 30 − 40%(right). Black data points depict all unlike-sign pπ
pair distributions while the blue lines depict the combinatorial back-
ground distributions estimated via side-band fitting.

To ensure that the KF Particle method can be reliably used189

for the extraction of physical yields, we also applied the KF190

Particle method to a Monte Carlo (MC) simulated sample191

generated using an embedding technique detailed as follows.192

Simulated Λ particles with a flat pT and rapidity distribu-193

tion are propagated through a GEANT3 [16] simulation of194

the STAR TPC. The Λ particles decay inside the simulated195

detector and the electronic signals originating from the de-196

cay particles are mixed with those from a given event from197

real data. The number of simulated Λs particles is 5% of the198

measured charged particle multiplicity of the event in which199

the simulated particles are embedded, and the simulated Λs200

all originate from the primary vertex of that event. The com-201

bined electronic signals are then processed with STAR track-202

ing software, which is also used for real data processing. The203

KF Particle package is then deployed to the resultant tracks204

for Λ reconstruction.205

We compare the performance of KF Particle on real data206

and MC simulation samples. The topological variables listed207

below are used in the selection of Λ candidates during the KF208

Particle reconstruction.209

Comparisons of these variables between data and MC sim-210

ulation for Λ candidates with 0.4 ≤ pT ≤ 1.2 GeV and211

centrality between 0 − 10% are shown in Fig. 4. In general,212

distributions of such topological variables from data are well213

described by MC simulations for all centrality and pT .214

In order to achieve optimal significance of the Λ signal, the215

Toolkit for Multivariate data Analysis is used. TMVA is a216
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Table 1. Topological variables for Λ reconstruction.
variable description

χ2
prim,π χ2 deviation of π track to the primary vertex
χ2
prim,p χ2 deviation of p track to the primary vertex
χ2
topo χ2 of primary vertex to the reconstructed Λ
χ2
p−π χ2 of daughter particle (p-π) fit
dΛ decay length of Λ
dΛ/σdΛ decay length normalized by its uncertainty
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Fig. 4. Key topological variables used in KF Particle method for Λ
reconstruction. Data and MC simulations are compared.
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Fig. 5. (left) BDT response value distributions for signal (blue) and
background (red) Λ candidates in the pT range 0− 1 GeV/c for 0−
10% centrality. (right) Efficiency for signal (blue) and background
Λ candidates (red) in the pT range 0−1 GeV/c for 0−10% centrality
as a function of the cut value placed on the BDT response value. The
significance (green) achieves its maximum value when the cut value
is -0.09.

family of supervised learning algorithms that can be used for217

differentiating signals and backgrounds. For more details, see218

Ref. [11]. A signal sample and a background sample are pre-219

pared as input for training. The signal samples are obtained220

from a GEANT3 simulation as described above. For the back-221

ground sample, we select sideband (3σ < |mpπ−mΛ,PDG| <222

6σ) p−π pairs in the real data around the Λ mass peak, where223

σ is the width of the Λ mass peak, and mpπ are mΛ,PDG are224

the masses of the p− π pair and the Λ baryon from the PDG225

respectively. These signal and background samples are then226

further divided into different pT and centrality classes. We227

use the Boosted Decision Tree method for training. Decision228

tree learning takes a set of input features and splits the input229

data recursively based on those features. In our case, the input230

features are the topological variables listed in Tab. 1 and the231

input data are the signal and background samples depending232

on these variables. Boosted decision trees combine multi-233

ple trees to strengthen the differentiation power for a detailed234

discussion, see Ref. [17]. The training takes into account the235

correlations between the different topological variables and236

collapses them into a single value, referred to as the BDT re-237

sponse value.238

The BDT response value distributions from the signal and239

background samples for Λ candidates with pT = 0−1 GeV/c240

and centrality 0–10% are shown in the left panel of Fig. 5.241

We observe that the BDT response values for the signal and242

background are significantly different from each other and243

thus serve as a good measure for differentiating between the244

signal and background. In order to select a BDT response245

cut value to optimize the significance S/
√
S +B, where S246

stands for signal counts and B stands for background counts,247

we use the TMVA package to first calculate the signal and248

background efficiency as a function of the BDT response cut249

value, εS(BDT cut) and εB(BDT cut), using the signal and250

background samples respectively. The signal and background251

efficiencies for Λ candidates in the pT range 0–1 GeV/c cen-252

trality are shown in Fig. 5. The estimated Significance can253

then be calculated from Eq. 3:254

Sig.(BDT cut) =
S0εS(BDT cut)√

S0εS(BDT cut) + B0εB(BDT cut)
,

(3)

where S0 and B0 are the number of signal and background255

counts where no BDT response value cut is applied. These256

numbers are obtained from real data directly, and the calcu-257

lated significance as a function of the cut value applied on258

the BDT response value for Λ candidates in the pT range 0–1259

GeV/c centrality is also shown in the right panel of Fig. 5.260

We find that a cut value of -0.09 maximizes the significance,261

and this cut value is chosen for this analysis. This procedure262

is then repeated for each pT and centrality bin. In general,263

as the signal-to-background ratio decreases, a stricter BDT264

selection cut is necessary to optimize the significance.265

We extract the number of signal and background counts for266

each pT and centrality bin using the tuned BDT cuts obtained267

as explained above. We then use the standard helix swimming268

method used in previous STAR analyses [6], the cuts are also269

tuned by the BDT and extract the corresponding number of270

signal and background counts, and compare the significance271
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Fig. 6. Ratio of significance for Λ particles using the KF Parti-
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helix swimming(HS) method as a function of pT of the Λ par-
ticles for centrality selection 0 − 5%(red), 30 − 40%(blue) and
60− 80%(magenta).

obtained using these two methods. The track quality and par-272

ticle identification cuts are chosen to be identical to each other273

for a fair comparison. The ratios of the significance as a func-274

tion of pT for three different centrality selections are shown275

in Fig. 6. The increase in significance is approximately inde-276

pendent of centrality, ≈ 30% in the pT range 1–3 GeV/c, and277

increases at low pT to ≈ 50%. In conclusion, this demon-278

strates that the KF Particle method gives a larger significance279

for Λ signal extraction in Au+Au collisions at
√
sNN = 27280

GeV with the STAR experiment.281

B. Ω Reconstruction282

We then turn to Ω baryon. Ω baryons are reconstructed283

via the decay channel Ω → Λ + K− → p + π− + K−. Ω284

particles decay with a proper decay length of cτ ' 25 mm [4],285

and the Λ daughters will decay again soon after. The final286

daughter tracks are detected by the STAR TPC. Similarly, for287

each proton, kaon or pion track, we require a minimum of288

15 hits to ensure good track quality. We reconstruct the Λ289

baryons with the KF Particle method first and then treat it as290

a daughter track to reconstruct the Ω production vertex.291

Since the decay topology for Ω baryons is more compli-292

cated than that for Λ baryons, more topological variables can293

be used for training to facilitate the differentiation between294

the signal and background. The topological variables listed295

in Tab. 2 are used in the selection of Ω baryon candidates dur-296

ing KF Particle reconstruction.297

Similar to the Λ baryon study, we generate a MC sample of298

reconstructed Ω baryons using a GEANT3 simulation of the299

Table 2. Topological variables for Ω reconstruction.

variable description
χ2
prim,π χ2 deviation of π track to the primary vertex
χ2
prim,p χ2 deviation of p track to the primary vertex
χ2
prim,K χ2 deviation of K track to the primary vertex
χ2
topo,Λ χ2 of primary vertex to the reconstructed Λ
χ2
p−π χ2 of daughter particle (p-π) fit
χ2
topo χ2 of primary vertex to the reconstructed Ω
χ2

Λ−K χ2 of daughter particle (Λ-K) fit
dΛ decay length of Λ
dΛ/σdΛ Λ decay length normalized by its uncertainty
dΩ decay length of Ω
dΩ/σdΩ Ω decay length normalized by its uncertainty
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Fig. 7. Key topological variables used in KF Particle method for Ω
reconstruction. Data and MC simulations are compared.

STAR TPC. The data-MC comparison of the key topological300

variables are shown in Fig. 7.301

We find reasonable agreement between the data and MC302

simulations, which suggests a proper estimation and usage of303

the covariance matrix of the Λ daughters and gives us confi-304

dence that the KF Particle method may be reliably used for305

the extraction of Ω baryon yields. We then generate a signal306

and background sample with the same method as in Λ analy-307

sis to supply input for TMVA training using the BDT method.308

The BDT response value distribution for Ω candidates with309

pT = 1− 4 GeV is shown in the left panel of Fig. 8, and the310

signal efficiency, background efficiency and significance are311

shown in Fig. 8. As in the case for Λ analysis, we select the312

BDT response cut value that optimizes the significance.313

This process is repeated for each pT and centrality bin. The314
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unlike-sign pπ pair distributions while the blue lines depict the com-
binatorial background distributions estimated via side-band fitting

significances using the optimized BDT response cuts for each315

pT and centrality bin are extracted. We then carry out sig-316

nal extraction using the default helix swimming method, with317

candidate selection cuts are chosen to be the same as previ-318

ous Ω analyses at the same collision energy [6, 18]. The sig-319

nal and background counts using the default helix swimming320

method are extracted, and the ratio of the significances using321

these two methods are calculated and shown in Fig. 10. We322

observe an ≈ 50% increase in significance in the pT range323

of 1 − 4 GeV/c. This increase is higher than the case for324

Λ, likely due to the more complex decay topology with two325

decay vertices reconstructed by KF Particle and larger back-326

ground. Further studies using KF Particle are underway to327

extend the low pT reach beyond 1 GeV/c; however, this is328

beyond the scope of this paper.329

C. D0 Reconstruction330

D0 particles are reconstructed via the decay channelD0 →331

K−π+ with a proper decay length of cτ ' 123 µm [4]. Since332

this decay length is less than the spatial resolution of the TPC333

1 1.5 2 2.5 3 3.5
 (GeV/c)

T
p

0

0.5

1

1.5

2

2.5

S
ig

n
if

ic
an

ce
 r

at
io

(K
F

/H
S

)

=27 GeVNNs, Au+Au Ω

0-5%

30-40%

60-80%

Fig. 10. Ratio of significance for Ω particles using the KF Parti-
cle method in conjunction with BDT training over those using the
helix swimming(HS) method as a function of pT of the Ω par-
ticles for centrality selection 0 − 5%(red), 30 − 40%(blue) and
60− 80%(magenta).

detector, the information from the micro-vertex detector HFT334

is used to identify the D0 decay vertex from the primary col-335

lision vertex. For each kaon or pion daughter track, we re-336

quired a minimum of 15 hits in the TPC and a match to the337

HFT detector with at least 3 hits inside to ensure good track338

quality. For kaon and pion particle identification, in addition339

to the requirement of |nσπ| < 3 and |nσK| < 2, we also uti-340

lized the information from the Time-of-Flight (TOF) detector341

by requiring the measured inverse velocity (1/β) to be within342

three standard deviations from the expected value when the343

measurement is available [5]. The topological variables listed344

in Tab. 3 are used in the selection of D0 meson candidates in345

KF Particle reconstruction. pT,π and pT,K cut is added here346

to reject combinatorial background at low pT .347

Table 3. Topological variables for D0 reconstruction.

variable description
χ2
prim,π χ2 deviation of π track to the primary vertex
pT,π transverse momentum of π track
χ2
prim,K χ2 deviation of K track to the primary vertex
pT,K transverse momentum of K track
χ2
topo,D0 χ2 of primary vertex to the reconstructed D0

χ2
K,π χ2 of daughter particle (K-π) fit
LD0/σL

D0 D0 decay length normalized by its uncertainty

Similar to the Λ and Ω baryon study, we generated an MC348

sample of reconstructed D0 mesons using a GEANT3 sim-349

ulation of the STAR TPC and HFT and processed through350

full detector tracking as was done in the real data reconstruc-351
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Fig. 11. Key topological variables used in KF Particle method for
D0 reconstruction. Data, MC simulations and background are com-
pared.

tion. The HFT simulator was tuned to reproduce the single352

track efficiency and DCA pointing resolution observed in real353

data. However, the consistency in topological variable distri-354

butions between data and MC for D0 signals has yet to be355

demonstrated. Figure 11 shows the comparison of several356

key topological variables used in the KF Particle method for357

D0 reconstruction between data (black data points) and MC358

(red histograms) for D0 signals. We find a reasonable agree-359

ment between the data and MC simulations for D0 signals.360

Additionally, background distributions also shown in Fig. 11361

(blue data points), which are estimated from real data using362

the side-band method in which the background candidates363

were selected by requiring the invariant mass of Kπ candi-364

date pairs within 3σ < |Minv −MD0 | < 6σ (σ is the Gaus-365

sian width of the D0 signal). The signal and background can366

be well distinguished especially on LD0/σLD0 and χ2
topo,D0367

distributions.368

We then used the signal sample generated from the MC369

simulation and the background sample from the real data to370

conduct the TMVA training with the BDT method to find the371

topological selection working point for the best signal signif-372

icance. Figure 8 left panel shows the BDT response value373

distributions for the D0 signal and background in the region374

of 2 < pT < 3 GeV/c, and the signal/background efficiencies375

and the signal significance are shown in the right panel. The376

signal significance was normalized to its maximum value. We377

determined the BDT response cut value in order to optimize378

the significance of D0 in each pT and centrality class.379

We then applied the optimized BDT selection cuts in the380

real data analysis. Figure 13 shows theD0 invariant mass dis-381
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Fig. 12. (left) BDT response value distributions for signal (blue) and
background (red)D0 candidates in the pT range 2−3 GeV/c for 10−
40% centrality. (right) Efficiency for signal (blue) and background
D0 candidates (red) in the pT range 2 − 3 GeV/c for 10 − 40%
centrality as a function of the cut value placed on the BDT response
value. The significance (green) achieves its maximum value when
the cut value is 0.05.
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Fig. 13. kπ invariant mass distributions using the KF Particle
method in 10− 40% Au+Au collisions at

√
sNN = 200 GeV in the

region of pT<1 GeV/c (left) and 1.5<pT<2 GeV/c (right). Black
data points depict all unlike-sign kπ pair distributions while the blue
lines depict the combinatorial background distributions estimated
via side-band fitting

tributions using the KF Particle method in 10− 40% Au+Au382

collisions at
√
sNN = 200 GeV in the regions of pT<1 GeV/c383

(left), and 1.5<pT<2 GeV/c (right), respectively. Red lines384

depict the function fits to the data with a Gaussian function385

for the D0 signal plus a linear background.386

Signal significance was then calculated from these distri-387

butions for D0 candidates within a mass window of |Minv −388

MD0 | < 3σ where σ is the D0 signal width determined by389

the Gaussian function fit. The background counts were deter-390

mined based on the linear background function fit results. We391

compare the significance values from the KF Particle method392

to the helix swimming (HS) method used in previous anal-393

ysis [5] and the ratio between the two methods is shown in394

Fig. 14. The shaded bands indicate statistical uncertainties395

from this calculation. The comparison demonstrates that the396

KF Particle method improves the reconstructedD0 signal sig-397

nificance, especially in the low pT and more central colli-398

sions. In 0−10% central Au+Au collisions at pT < 1 GeV/c,399

the improvement can be as significant as a factor of ∼3. This400

is possibly due to the enormous amount of combinatorial401

background (hundred times signals) in that particular range,402
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and the cuts based on statistical criteria work well on select-403

ing the particles that originate from a secondary vertex.404

IV. SUMMARY405

In summary, we have applied the KF Particle method to406

the reconstruction of Λ, Ω− hyperons, and D0 meson in407

the STAR experiment. The KF Particle method, by utilizing408

covariant matrices of tracking parameters, improves the re-409

constructed Λ (Ω) significance by approximately 30% (50%)410

compared to the traditional helix swimming method in
√
sNN411

= 27 GeV Au+Au collisions. The improvement in D0 signif-412

icance by applying the KF Particle method has a pT depen-413

dence in
√
sNN = 200 GeV Au+Au collisions with the largest414

improvement as significant as a factor of ∼3 in pT<1 GeV/c415

and 0 − 10% central collisions. We also demonstrated that416

Monte Carlo simulation can reproduce the topological vari-417

able distributions used in the KF Particle method, and thus418

establishes KF Particle as a robust method for strange and419

open charm hadron analyses in the STAR experiment. Since420

the KF Particle method is independent of the geometry of the421

detector, it will be useful in other experiments, especially in422

analyses with a small signal-to-background ratio.423
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